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ABSTRACT

Recently, the processing of non-sinusoidal signals, or sound tex-
tures, has become an important topic in various areas. In general,
the transformation is done by the phase vocoder techniques.Since
the phase vocoder technique is based on a sinusoidal model, it’s
performance is not satisfying when applied to transform sound tex-
tures. The following article investigates into the problemusing as
example the most basic non-sinusoidal sounds, that are noise sig-
nals. We demonstrate the problems that arise when time stretch-
ing noise with the phase vocoder, provide a description of some
relevant statistical properties of the time frequency representation
of noise and introduce an algorithm that allows to preserve these
statistical properties when time stretching noise with thephase
vocoder. The resulting algorithm significantly improves the per-
ceptual quality of the time stretched noise signals and therefore it
is seen as a promising first step towards an algorithm for transfor-
mation of sound textures.

1. INTRODUCTION

In present time, there exist many algorithms that have been de-
veloped to achieve high quality transformation of sounds. These
state-of-the-art algorithms mainly focused on sinusoidalsounds[1]
[2] [3] [4]. Such as instruments and tonal sounds. While the
properties of sinusoidal sounds are well-researched, a large class
of sounds cannot be dealed with the way dealing with sinusoidal
sounds. These sounds often driven by a stochastic process. They
often calledsound textures.

Sound textures are common in the environment. They could be
either natural of artificial. For example, the sounds of windblow-
ing and rain dropping are natural textures, and the noise of crowd
and the sound of train passing are artificial. Although there’s no
clear definition of sound texture[5], this class of sounds often ex-
ploits certain stable structure over a time period. The structure can
be described by a series of statistic properties. There are some dif-
ferent approaches dealing with sound textures. For example, Saint-
Arnaud[5] proposed an analysis/synthesis scheme which based on
atomic features in sound textures, Hanna[6] used randomized si-
nusoids to synthesize stochastic noises. Schwarz[7] proposed a
descriptor-driven, corpus-based approach to synthesize sound tex-
tures. But to enable the further analysis, synthesis and manipula-
tion of sound textures, a parametrized modeling which describes a
texture with a set of statistical properties is desired. Fortunately,
some previous works on parametrization has been done for im-
age textures, Portilla[8] proposed a texture model based onthe
statistics of wavelet coefficients. Bruna[9] proposed a newwavelet
transform which provides a better view for textures while captur-
ing high-order statistics. For sound textures, McDermott[10] pro-

posed a parametrized model, adapted from [8] and which charac-
terizes target sound texture with high order statistics andcorrela-
tion between subband envelopes. An algorithm is proposed inhis
article to convert Gaussian noise into different target textures.

To manipulate sounds, such as time stretching or transposi-
tion, using phase vocoder[1] [2] [3] is a common approach. Phase
vocoder could stretch a signal while preserving it’s envelope and
naturality of transient [11] [12] [13]. With phase vocoder,one
could perform a large factor stretching which still yields anatural
result. While the theory basis of phase vocoder works well for si-
nusoidal signal, it’s not suitable for sound textures. Because of the
constraint of phase continuity could no longer be used to estimate
output phases. To stretch a sound texture with phase vocoder, one
must maintain perceptive important properties of the texture dur-
ing the stretching.

In this article, we try to resolve the properties being changed
during the transformation. In order to aim the phenomenon ap-
peared during the process, the time stretching of white Gaussian
noise is used. Since Gaussian noise exploits independency along
both time and frequency axes, it introduces no extra dependency
to the analysis frames. With this simplified case, we found that it’s
crucial to compensate the change of temporal correlation during
the time stretching transformation. A primitive algorithmis given
to correct the distortion of temporal correlation.

The paper is organized as follows: section 1 describes previous
works on the sound texture parametrization and the issues encoun-
tered when applying phase vocoder to sound texture. Section2
lists the perceptually important statistical properties of sound tex-
tures. Section 3 formulates the time stretching procedure with
phase vocoder and correct the result with iterative approaches.
Section 4 conducts an experiment of the correction. Section5
gives the conclusion and future prospective.

2. PROPERTIES OF SOUND TEXTURES

According to Julesz’s conjecture[14] and portilla’s work[8], the
perceptually important properties of a texture can be described in
statistical features. In Mcdermott’s work[10], it suggests that the
perceptually important properties of sound texture could be sum-
marized in three categories :marginal statistics, frequency corre-
lation and temporal correlation. These properties are further de-
scribed in the following subsections:

2.1. Marginal Statistics

Marginal statistics are the statistical moments of the spectral coef-
ficients in different time points or different subbands. Though the
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usage of higher orders are possible, the first four moments are used
to form the marginal statistics in common cases [8].

2.2. Frequency Correlation

In general, frequency correlation means the cross-correlation be-
tween different frequency components. These components can be
simply coefficients, subbands, or features of subbands, forexam-
ple, the envelope of cochlear bands[15] [10]. Moreover, in [10],
each subband is further filtered by a modulation filterbank, and the
cross-correlation of the modulation bands are evaluated.

2.3. Temporal Correlation

Temporal correlation refers to the autocorrelation of a frequency
component along time axis. It can be the autocorrelation of STFT
coefficients[16] or the autocorrelation of a temporal feature. It is
also the most important property when performing time stretching
by phase vocoder. The detail is described in section 3.

3. TIME STRETCHING GAUSSIAN NOISES

To investigate the problem encountered during the stretching of
Gaussian by the phase vocoder, the formulation of phase vocoder
must be described. The transformation procedure of phase vocoder
consists of analysis, modification and resynthesis [1] [2] [3]. The
analysis step first applies STFT to the input signal, then, proceed
modification in the spectral domain, and last, the resynthesis is
done by inverse STFT and overlap-and-add. Assuming a given
input signals, along with a window functionw and the size of
Fourier transformN . Then the analysis frameSl which centered
at time pointl can be written as:

Sl(k) =
∑

n

s(n)w(n− l)e
−j2πnk

N (1)

During the transformation, the coefficients ofSl may be mod-
ified as well as the centering positionl might be moved [17] [3]
[11]. If f(l) is the function of the modified center ofSl, then the
resynthesis procedure can be written as:

s′(n) =
∑

k

Sl(k)e
j2πnk

N (2)

s̃(n) =

∑
n
w(n− f(l))s′(n)∑
w2(n− f(l))

(3)

If inconsistency happens between overlapping frames, (3) out-
puts the signal with the least square error respect to the correspond-
ing analysis frames [18]. If we stretch a Gaussian noise (1)-(3) and
assign the phase of each frame as the way processing sinusoidal
signal, one would find that the noise component disappeared in
the resynthesized signal. In fact, short distorted sinusoids will be
perceived in the resynthesized signal. In this case, the phase and
the time position of analysis frames are modified during the time
stretching transformation. While the amplitude of the coefficients
is unmodified, the marginal statistics of analysis frames remain
the same. Therefore, the possible variation of correlationbetween
STFT coefficients is investigated.

The correlation between two STFT coefficients in the analysis
frames is the inner product between one coefficient and the com-
plex conjugate of the other. By using (1), the correlation is:

CSα(k1),Sβ(k2) =
∑

n

s(n)w(n− α)e
−j2πnk1

N

∗
∑

n

s(n)w(n− β)e
−j2πnk2

N (4)

The equation in (4) can be used to calculate the correlation in
both time and frequency directions. Let the terms in (4) be column

vectors, replace the window functionw(n−l) by wl, ande
−j2πnk

N

by ekN , (4) can be rearranged into the summation of element-wise
product(Hadamard product) of outer product matrices:

CSα(k1),Sβ(k2) =
∑

(s · wα · ek1

N )(s · wβ · ek2

N )T (5)

=
∑

ssT · wαwT
β · ek1

N ek2

N

T

(6)

Equation (6) consists of three parts, the outer product ofs,
shifted outer product ofw, and the outer product betweenek1

N

andek2

N . In fact, the latter two terms form the shape of a Gabor
filter[19]. The correlation respect to a direction is equal to apply
the corresponding Gabor filter to the outer product matrix ofs.

Since the stretching is done by moving the center of analy-
sis frames to new positions, their relative distances in time are
changed. Therefore the temporal correlation between the frames
would no longer correct. It can be seen from (6), moving the po-
sition of frames affects only the second term,wαwT

β . Assumings
is time-invariant and independent tow, LS is the length ofs. The
estimated temporal correlation of STFT coefficients can be written
as the form of complex autocorrelation function in time:

AS(k, l) = LS ·
∑

E[ssT ] · w0wT
l · ekNekN

T

(7)

The autocorrelation of analysis frames in (7) should beAS(k, dl)
after time stretching. As one could see, even ifs has no innate
autocorrelation (E[ssT ] = I), there still exists autocorrelation be-
tween the coefficients of STFT frames at the same bin index, which
is induced bywαwT

β . Originally, the autocorrelation introduced
by the analysis window would be canceled after resynthesis.But
since the position of analysis frames are moved, the cancellation
fails. Fig.1 shows the difference of autocorrelation function of a
Gaussian noise before and after a time stretching of factor 2with
an ordinary phase vocoder. Also, in Fig.1, the autocorrelation is
not exactly stretched by twice in time. This is because the phase
compensation in phase vocoder cannot fix the autocorrelation of a
noise correctly.

To compensate the change of correlation, the coefficients of
Sl(k) must be altered to make their autocorrelation approaches
AS(k, dl). The optimization which proposed in [8] is applied. Let
T (l′) = AS(k, dl) and the maximum lag isL, we could have:

Φ =
L∑

l

‖T (l)− AS(k, l)‖
2 (8)

∂Φ

∂si(k)
∝

L∑

l

(T (l)− AS(k, l))(si−l(k) + si+l(k)) (9)

Apply the gradient projection mentioned in [8], we could have:
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Figure 1: The change of temporal correlation before(thick solid
line) and after(thin dotted line) phase vocoder stretching.(k =
64,−11.6 ≤ timelag ≤ 11.6)

s′i(k) = si(k) +

L∑

l

λ(l, k)(s)(si−l(k) + si+l(k)) (10)

s′i(k) = si(k)⊗ h(i, k) (11)

h(i, k) in (11) is a zero-phase filter function with lengthL.
There areN/2 different filters for bin indices between1 N/2,
while the other half are the complex conjugates. At last, we use
the algorithm in [20] to solve the coefficients of the filters.

4. EXPERIMENT

To verify the result of section 3, an experiment is conducted. In
this experiment, we perform the time stretching on a random gen-
erated Gaussian noise. Since the marginal statistics and spectral
correlation are unaffected by time stretching, only the temporal
correlation has to be corrected after the transformation. The first
step is the ordinary phase vocoder analysis as (1). Then the fol-
lowing step corrects temporal correlation for each frequency bins
respecting to the stretch factor. The resynthesis is done as(3). The
estimation of target autocorrelation follows (7), andE[ssT ] is re-
placed byσ2I due to the nature of Gaussian noise. The detailed
configuration is listed below:

• original signal : Gaussian noise (1 sec).

• sampling rate : 44.1khz

• stretching factor : 3.0

• hop size of input frame : 16

• size of Fourier transform : 256

• maximum lag of correlation : 64

The error of temporal correlation for each frequency bin before and
after correction is shown in Fig.2. In most of the frequency bins,
the error is lower than 48dB, through a better correction maystill
exist. The spectrogram of the Gaussian noise is shown in Fig.3.
In the spectrogram of ’stretched w/o correction’, the energy of the
spectrogram is not uniformly distributed. Both frequency compo-
nents and the gaps between them tend to persist longer in time,
thus making the sound more sinusoidal and resulting perceivable
artifacts such as short pitches. After the correction is applied, the
intensity of short sinusoids are mitigated, thus reducing the arfe-
facts. The sound files could be found on [21]. The difference
between the sounds is perceivable, but still not perfect. This may
due to the temporal correlation was distorted after the resynthesis.

A possible reason is that the phase coherence is not considered in
the correction of temporal correlation. If so, certain constraint has
to be applied to the correction mechanism.
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Figure 2: The error of temporal correlation before(solid line) and
after(dotted line) the correction.
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Figure 3: The spectrogram of original signal, stretched w/ocor-
rection, stretched with correction

5. CONCLUSION

With a proper parametrized model and proper modification, phase
vocoder could be applied to non-sinusoidal signals. In thispa-
per, we investigated the variation of temporal correlationduring
the time stretching process on a Gaussian noise by phase vocoder.
From this simplified case, we found that the variation will always
in place regardless the innate correlation of the signal. Also, the
variation in the temporal correlation is perceptually significant.
Therefore, to achieve a successful time stretching, it is necessary
to correct temporal correlation respect to the stretching factor and
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analysis window. The temporal correlation function can be ob-
tained by estimation under different stretch ratio. Currently, the
correction procedure is done iteratively, but it’s likely that there
exists a non-iterative solution. However, this correctiondoes not
include the correction of correlation induced by the signalitself
and the correction of correlation is not perfect. The discovery from
the streching of Gaussian could be served as the basis of general
sound texture transformation. This could lead to various applica-
tions like non-uniform stretching, texture morphing and paramet-
ric texture synthesizing. The future work includes considering the
general sound texture and seek an efficient mechanism to correct
statistical properties during the transformation by phasevocoder.
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